The Neutrophil to Lymphocyte Ratio: An Emerging Diagnostic Biomarker for Parainflammation

Alphonsus Ogbonna Ogbuabor a*, Edwin Obiora Ohotu a and Emmaneul Ikechukwu Nwobodo a

a Department of Medical Laboratory Sciences, Enugu State University of Science and Technology, Enugu State, Nigeria.

ABSTRACT

The present century health care system has made great innovations for the diagnosis and treatment of diseases. Despite this, the diagnosis of parainflammation is difficult due to absence of symptoms in individuals. The development of diseases could generally be mitigated by early detection and control of parainflammation since it appears to be a unifying factor for infectious and non-infectious diseases. The present review describes the value of the neutrophil to lymphocyte ratio as a biomarker for the detection of parainflammation in disease asymptomatic (apparently healthy) individuals.

Keywords: Parainflammation; disease; apparently healthy persons; neutrophil to lymphocyte ratio; biomarker; diagnosis.

1. INTRODUCTION

Parainflammation is a phenomenon that describes a persistent asymptomatic abnormal immune response during the early stages of disease development which results in breakdown of the host tolerance to the disease [1,2]. It is a unifying factor in the process of development of all diseases whether infectious or non-infectious. Although persistent or intermittent body pain, myalgia, arthralgia, chronic fatigue, depression, anxiety, constipation, diarrhea, weight gain or

*Corresponding author: E-mail: ogbuaborao@yahoo.com;
loss has been identified by some scientists as an early sign of parainflammation, they are not constitutive in describing the onset or presence of parainflammation due to the fact that these are common experience after our daily hustles and puzzles [3].

2. PARAINFLAMMATORY THEORY OF DISEASES

Parainflammation appears to be a grand unifying factor predisposing apparently healthy persons to diseases [4]. Apparently healthy individuals do not present with clinical symptoms for disease with symptoms being a later occurrence in the disease development process and could reduce the degree of reversibility though could be detected with appropriate diagnosis [5-7]. The disease process begins with the appropriate exposure to or accumulation of factors sufficient for the host susceptibility [7]. For an infectious disease, the exposure is a microbial pathogen while for a non-infectious disease, the exposure could be a factor that initiates a vicious cycle in the body biological process [5,6]. Such exposure leads to an early undetected pathological changes in the body which maybe systemic and/or localized and is referred to as the subclinical disease state (parainflammation) extending from the time of exposure to the onset of disease clinical symptoms usually referred to as the incubation period for infectious diseases and the latency period for non-infectious diseases. The onset of clinical symptoms therefore marks the progression from parainflammation to a disease state with most diagnosis made during overt disease. This suggests that the diagnosis of parainflammation in healthy individuals as well as its timely control provides a target for prevention of the development of diseases.

3. LABORATORY PARAMETERS FOR INVESTIGATION OF PARAINFLAMMATION

The diagnosis of increased neutrophil to lymphocyte ratio may not be specific to any particular disease condition because parainflammation is not a specific disease condition but a pathological process to many diseases though it has been established in many diseases including cardiovascular disease, rheumatic diseases, diabetes mellitus, systemic diseases, colorectal, gastric, lung and ovarian cancer as well as infectious diseases [8]. Therefore there is a need to establish a differential diagnosis that could support a definitive diagnosis for parainflammation. In doing this, patients history and physical examination becomes an important initial step to diagnosis. The diagnostic findings may include abnormal immunohematological parameters from the routine full blood count estimations such as an increased serum common cytokines involving but not limited to IL-8, IL-1, IL-6 and TNF-α, increased antinuclear antibodies, rheumatoid factor, amyloid A,C-reactive protein and concomitant hypoalbuminemia as well as polyclonal gammopathy (gammaglobulin) in serum electrophoresis [2,3,9,10].

4. THE SIGNIFICANCE OF THE NEUTROPHIL TO LYMPHOCYTE RATIO IN THE INVESTIGATION OF PARAINFLAMMATION

The neutrophil to lymphocyte ratio (NLR) is the count ratio of the peripheral blood number of neutrophils and lymphocytes that could be easily calculated by using either absolute cell counts or percentages [8]. This ratio gives a multifactorial insight into immunocompetent leukocyte population namely the neutrophil (granulocytes) for the innate immune system and lymphocyte (agranulocytes) for the adaptive immune system due to illness and various pathological state [8]. The dynamic of the NLR reveals the intensity of immune-inflammatory reaction and the balance between acute and chronic inflammation [11-14]. Previous studies had found significant association of the neutrophil to lymphocyte ratio with established inflammatory markers such as the C-reactive protein and many proinflammatory cytokines supporting the NLR as a useful marker of inflammation [15-18].

5. CONDITIONS THAT AFFECTS THE NEUTROPHIL TO LYMPHOCYTE RATIO

High NLR occurs when the neutrophil count becomes high while the lymphocyte count becomes low whereas a low NLR occurs when the neutrophil count becomes low and the lymphocyte count becomes high. The NLR may not specifically be an indication for parainflammation but may also increase rapidly following acute physiologic stress (<6hours) resulting from any condition that causes physiological stress such as exercise or hypovolemic shock. During physiological stress,
the number of neutrophils increases while the number of lymphocytes decreases in response to a non pathological increase in the levels of emergency hormones such as cortisol and epinephrine. High levels of cortisol have been identified to cause a concomitant increase in the neutrophil counts while also decreasing the lymphocyte counts. Likewise endogeneous catecholamines such as epinephrine may cause lymphopenia [19]. This prompt response time makes the NLR a better reflection of acute stress than parameters such as the complete blood count which are more sluggish to respond to parainflammation as well as acute phase reactants which are more labor intensive [8,20,21]. The normal range for the NLR is 1-2, values higher than 2.0 or below 1.0 in adults may be diagnostic of a condition. An NLR greater than 2 is an early sign of a pathological process such as parainflammation [8]. Values 3-7 indicates mild parainflammation,7-11 indicates moderate parainflammation and sepsis, 11-17 indicates severe parainflammation while 17-23 indicates septic shock and multiple trauma while an NLR ≥23 indicates terminal cancer. The elevation of NLR has relation to the worsening of clinical course, similarly the decrease is related to an improvement or good prognosis [8].

6. CONCLUSION

The NLR has been shown to be an accurate, cheap and easy diagnostic marker for parainflammation. The current use of the white blood cell as a clinical marker for parainflammation is based on the fact that it is available and easy to determine. However, given the availability of the NLR, using it to replace the white blood cell count seems like a natural evolution with a better diagnostic and prognostic insight for parainflammation. It is also less expensive compared to the labor and cost of determination of other markers of parainflammation such as lactate, procalcitonin, albumin etc.

ETHICAL APPROVAL AND CONSENT

It is not applicable.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES


