Interaction between Phagocytic Cells with Antiphagocytic Properties of Cryptococcus neoformans: When Love and Hate Collide

Main Article Content

Forman Erwin Siagian

Abstract

Global systemic fungal infection, including meningeal cryptococcosis caused by the encapsulated yeast Cryptococcus spp, continue to rise in number, especially among HIV infected individuals. Infection occur through inhalation of spore which is abundant in the environment. Initially this fungus stay in the lungs for a certain time without causing any symptoms and when the host’s cellular immune status is depleted, it can uses monocyte as a vehicle to take them to the brain, using a mechanism called Trojan Horse mechanism. Normal alveolar macrophage as the first line of innate immune system in the lungs are supposed to phagocytose, internalized and then destroy it inside an organelle named phagolysosome. But Cryptococcus spp seemed to have a built in antiphagocytic mechanism to avoid destruction and even can multiply therein. The interaction between this clever yeast and the host’s phagocytic cells determine the course of the disease.

Keywords:
Macrophage, monocyte, yeast, polysaccharide capsule, virulence.

Article Details

How to Cite
Siagian, F. E. (2021). Interaction between Phagocytic Cells with Antiphagocytic Properties of Cryptococcus neoformans: When Love and Hate Collide. International Blood Research & Reviews, 12(1), 41-51. https://doi.org/10.9734/ibrr/2021/v12i130144
Section
Systematic Review Article

References

Rodrigues ML, Nosanchuk JD. Fungal diseases as neglected pathogens: A wake-up call to public health officials. PLOS Neglected Tropical Diseases 2020;14(2):0007964. Available:https://doi.org/10.1371/journal.pntd.0007964

Williamson PR, Jarvis JN, Panackal AA, Fisher MC, Molloy SF, Loyse A, et al. Cryptococcal meningitis: Epidemiology, immunology, diagnosis and therapy. Nat Rev Neurol. 2017;13(1):13-24.
DOI: 10.1038/nrneurol.2016.167

Ghaffar M, Orr C, Webb G. Antiphagocytic protein 1 increases the susceptibility of Cryptococcus neoformans to amphotericin B and fluconazole. PLoS One. 2019;14(12):e0225701.
DOI: 10.1371/journal.pone.0225701

Poley M, Koubek R, Walsh L, McGillen B. Cryptococcal meningitis in an apparent immunocompetent patient. J Investig Med High Impact Case Rep. 2019;7:2324709619834578.
DOI: 10.1177/2324709619834578

Casadevall A, Coelho C, Alanio A. Mechanisms of Cryptococcus neoformans-Mediated Host Damage. Frontiers in Immunology, 2018; 9:855.
DOI=10.3389/fimmu.2018.00855

Osterholzer JO, Milam JE, Chen GH, Toews GB, Huffnagle GB, Olszewski MA. Role of dendritic cells and alveolar macrophages in regulating early host defense against pulmonary infection with Cryptococcus neoformans. Infection and Immunity. 2009;77(9):3749-3758.
DOI: 10.1128/IAI.00454-09

De Leon-Rodriguez CM, Rossi DCP, Fu MS, Dragotakes Q, Coelho C, Ros IG, et al. The outcome of the Cryptococcus neoformans–Macrophage interaction depends on phagolysosomal membrane integrity. The Journal of Immunology. 2018;201(2):583-603.
DOI: 10.4049/jimmunol.1700958

Yang C, Wang J, Zou L. Innate immune evasion strategies against cryptococcal meningitis caused by Cryptococcus neoformans. Experimental and Therapeutic Medicine. 2017;14:5243-5250.
Available:https://doi.org/10.3892/etm.2017.5220

Gaylord EA, Choy HL, Doering TL. Dangerous liaisons: Interactions of Cryptococcus neoformans with host phagocytes. Pathogens. 2020;9(11):891.
DOI: 10.3390/pathogens9110891

García-Rodas R, Zaragoza O. Catch me if you can: phagocytosis and killing avoidance by Cryptococcus neoformans, FEMS Immunology and Medical Microbiology. 2012;64(2):147–61. Available:https://doi.org/10.1111/j.1574-695X.2011.00871.x

Santiago-Tirado FH, Onken MD, Cooper JA, Klein RS, Doering TL. Trojan horse transit contributes to blood-brain barrier crossing of a eukaryotic pathogen. mBio. 2017;8(1):02183-16.
DOI: 10.1128/mBio.02183-16

Shourian M, Qureshi ST. Resistance and tolerance to cryptococcal infection: An Intricate balance that controls the development of disease. Frontiers in Immunology. 2019;10:66. DOI:10.3389/fimmu.2019.00066

Lin X, Heitman J. The biology of the Cryptococcus neoformans species complex. Annu Rev Microbiol. 2006;60:69-105.
DOI:10.1146/annurev.micro.60.080805.142102
PMID: 16704346

Kozubowski L, Heitman J. Profiling a killer, the development of Cryptococcus neoformans, FEMS Microbiology Reviews. 2012;.36(1):78–94.
Available:https://doi.org/10.1111/j.1574-6976.2011.00286.x

Lin J, Idnurm A, Lin X. Morphology and its underlying genetic regulation impact the interaction between Cryptococcus neoformans and its hosts, Medical Mycology. 2015;53(5):493–504. Available:https://doi.org/10.1093/mmy/myv012

Zaragoza O. Basic principles of the virulence of Cryptococcus, Virulence. 2019;10(1):490-501.
DOI: 10.1080/21505594.2019.1614383

Zhao Y, Lin J, Fan Y, Lin X. Life cycle of Cryptococcus neoformans. Annual Review of Microbiology. 2019;73(1):17-42.
Available:https://doi.org/10.1146/annurev-micro-020518-120210

Esher SK, Zaragoza O, Alspaugh JA. Cryptococcal pathogenic mechanisms: A dangerous trip from the environment to the brain. Mem. Inst. Oswaldo Cruz. 2018;113(7):180057. Available:https://doi.org/10.1590/0074-02760180057

Sun S, Coelho MA, David-Palma M, Priest SJ, Heitman J. The evolution of sexual reproduction and the mating-type locus: Links to pathogenesis of cryptococcus human pathogenic fungi. Annual Review of Genetics. 2019;53(1):417-44.
Available:https://doi.org/10.1146/annurev-genet-120116-024755

Lin X, Nielsen K, Patel S, Heitman J. Impact of mating type, serotype, and ploidy on the virulence of Cryptococcus neoformans. Infection and Immunity. 2008;76(7):2923-38.
DOI: 10.1128/IAI.00168-08

Temfack E, Rim JJB, Spijker R, Loyse A, Chiller T, Pappas PG, et al. Cryptococcal antigen in serum and cerebrospinal fluid for detecting cryptococcal meningitis in adults living with HIV: Systematic review and meta-analysis of diagnostic test accuracy studies, Clinical Infectious Diseases, ciaa1243; 2020.
Available:https://doi.org/10.1093/cid/ciaa1243

Fu MS, Liporagi-Lopes LC, dos Santos Júnior SR, Tenor JL, Perfect JR, Cuomo CA, et al. Amoeba predation of Cryptococcus neoformans results in pleiotropic changes to traits associated with virulence. bioRxiv. 2020;241190.
DOI:https://doi.org/10.1101/2020.08.07.241190

Casadevall A, Coelho C, Alanio A. Mechanisms of Cryptococcus neoformans-mediated host damage. Frontiers in Immunology. 2018;9:855.
DOI: 10.3389/fimmu.2018.00855

Ding H, Mayer FL, Sánchez-León E, de S Araújo GR, Frases S, Kronstad JW. Networks of fibers and factors: Regulation of capsule formation in Cryptococcus neoformans. F1000Res. 2016;22(5):F1000.

Faculty Rev-1786.
DOI: 10.12688/f1000research.8854.1

O'Meara TR, Alspaugh JA. The Cryptococcus neoformans capsule: A sword and a shield. clinical microbiology reviews. 2012;25(3):387-408.
DOI: 10.1128/CMR.00001-12

Watkins RA, King JS, Johnston SA. Nutritional requirements and their importance for virulence of pathogenic cryptococcus species. Microorganisms. 2017;5(4):65.
DOI: 10.3390/microorganisms5040065

Vecchiarelli A, Pericolini E, Gabrielli E, Kenno S, Perito S, Cenci E, et al. Elucidating the immunological function of the Cryptococcus neoformans capsule. Future Microbiology. 2013;8(9):1107-1116.
DOI: 10.2217/fmb.13.84

Masfiyah, Masfiyah. India ink staining, a rapid and affordable test for diagnosis of cryptococcal meningitis. Sains Medika: Jurnal Kedokteran dan Kesehatan. 2015;6(2):71-73.
DOI:http://dx.doi.org/10.26532/sainsmed.v6i2.606

Rajasingham R, Wake RM, Beyene T, Katende A, Letang E, Boulware DR. Cryptococcal meningitis diagnostics and screening in the era of point-of-care laboratory testing. J Clin Microbiol. 2019;57(1):01238-18.
DOI: 10.1128/JCM.01238-18

Pacheco P, White D, Sulchek T. Effects of microparticle size and Fc density on macrophage phagocytosis. PLoS One. 2013;8(4):60989.
DOI: 10.1371/journal.pone.0060989

Doshi N, Mitragotri S. Macrophages recognize size and shape of their targets. PLoS One. 2010;5(4):10051.
DOI: 10.1371/journal.pone.0010051

Westman J, Grinstein S, Marques PE. Phagocytosis of necrotic debris at sites of injury and inflammation. Frontiers in Immunology. 2020;10:3030.
DOI: 10.3389/fimmu.2019.03030

Hochreiter-Hufford A, Ravichandran KS. Clearing the dead: Apoptotic cell sensing, recognition, engulfment, and digestion. Cold Spring Harb Perspect Biol. 2013;5(1):008748.
DOI: 10.1101/cshperspect.a008748

Levin R, Grinstein S, Canton J. The life cycle of phagosomes: Formation, maturation, and resolution. Immunol Rev. 2016;273(1):156-79.
DOI: 10.1111/imr.12439

Günther J, Seyfert HM. The first line of defence: Insights into mechanisms and relevance of phagocytosis in epithelial cells. Semin Immunopathol. 2018;40(6):555-65.
DOI: 10.1007/s00281-018-0701-1

Silva MT. When two is better than one: Macrophages and neutrophils work in concert in innate immunity as complementary and cooperative partners of a myeloid phagocyte system. J Leukoc Biol. 2010;87(1):93-106.
DOI: 10.1189/jlb.0809549

Thakur A, Mikkelsen H, Jungersen G. Intracellular pathogens: Host immunity and microbial persistence strategies. J Immunol Res. 2019;1356540.
DOI: 10.1155/2019/1356540

Flieger A, Frischknecht F, Häcker G, Hornef MW, Pradel G. Pathways of host cell exit by intracellular pathogens. Microbial Cell. 2018;5(12):525-44.
DOI: 10.15698/mic2018.12.659

Isenreich W, Rudel T, Heesemann J, Goebel W. How viral and intracellular bacterial pathogens reprogram the metabolism of host cells to allow their intracellular replication. Frontiers in Cellular and Infection Microbiology. 2019;9:42.
DOI: 10.3389/fcimb.2019.00042

Belon C, Anne-Béatrice BP. Intramacrophage survival for extracellular bacterial pathogens: MgtC as a key adaptive factor. Frontiers in Cellular and Infection Microbiology. 2016;6:52
DOI: 10.3389/fcimb.2016.00052

Dutta C, Paul S. Microbial lifestyle and genome signatures. Curr Genomics. 2012;13(2):153-62.
DOI: 10.2174/138920212799860698

Liu TB, Kim JC, Wang Y, Toffaletti DL, Eugenin E, Perfect JR, et al. Brain inositol is a novel stimulator for promoting cryptococcus penetration of the blood-brain barrier. PLOS Pathogens. 2013;9(4):1003247.
Available:https://doi.org/10.1371/journal.ppat.1003247

Rodrigues J, Ramos CL, Frases S, Godinho RMC, Fonseca FL, Rodrigues ML, et al. Lack of chitin synthase genes impacts capsular architecture and cellular physiology in Cryptococcus neoformans, The Cell Surface. 2018;2:14-23.
Available:https://doi.org/10.1016/j.tcsw.2018.05.002

Brandão F, Esher SK, Ost KS. HDAC genes play distinct and redundant roles in Cryptococcus neoformans virulence. Sci Rep 8. 2018;5209.
Available:https://doi.org/10.1038/s41598-018-21965-y

Del Poeta M. Role of phagocytosis in the virulence of Cryptococcus neoformans. Eukaryot Cell. 2004;3(5): 1067-75.
DOI: 10.1128/EC.3.5.1067-1075.2004

Chun CD, Brown JCS, Madhani HD. A major role for capsule-independent phagocytosis-inhibitory mechanisms in mammalian infection by Cryptococcus neoformans. Cell Host Microbe. 2011;9(3):243-51.
DOI: 10.1016/j.chom.2011.02.003

Acharya D, Li XR (Lisa), Heineman RES, Harrison RE. Complement receptor-mediated phagocytosis induces proinflammatory cytokine production in murine macrophages. Frontiers in Immunology. 2020;10:3049.
DOI: 10.3389/fimmu.2019.03049

Bestebroer J, de Haas CJC, van Strijp JAG. How microorganisms avoid phagocyte attraction, FEMS Microbiology Reviews. 2010;34(3):395–414.
Available:https://doi.org/10.1111/j.1574-6976.2009.00202.x

Orner EP, Bhattacharya S, Kalenja K, Hayden D, Del Poeta M, Fries BC. Cell wall-associated virulence factors contribute to increased resilience of old Cryptococcus neoformans cells. Frontiers in Microbiology. 2019;10:2513.
DOI: 10.3389/fmicb.2019.02513

Luberto C, Martinez-Mariño B, Taraskiewicz D, Bolaños B, Chitano P, Toffaletti DL, et al. Identification of App1 as a regulator of phagocytosis and virulence of Cryptococcus neoformans. J Clin Invest. 2003;112(7):1080-94.
DOI: 10.1172/JCI18309

Perfect JR. Cryptococcus neoformans: A sugar-coated killer with designer genes, FEMS Immunology & Medical Microbiology. 2005;45(3):395–404.
Available:https://doi.org/10.1016/j.femsim.2005.06.005

Mourad A, Perfect JR. The war on cryptococcosis: A review of the antifungal arsenal. Mem Inst Oswaldo Cruz. 2018;113(7):170391.
DOI: 10.1590/0074-02760170391

Santos JRA, Ribeiro NQ, Bastos RW, et al. High-dose fluconazole in combination with amphotericin B is more efficient than monotherapy in murine model of cryptococcosis. Sci Rep 7. 2017;4661.
Available:https://doi.org/10.1038/s41598-017-04588-7

Molloy SF, Kanyama C, Heyderman RS, Loyse A, Kouanfack C, Chanda D, et al. ACTA trial study team. Antifungal Combinations for Treatment of Cryptococcal Meningitis in Africa. N Engl J Med. 2018;378(11):1004-1017.
DOI: 10.1056/NEJMoa1710922. PMID: 29539274

Azeved RVDM, Rizzo, Rodrigues ML. Virulence factors as targets for anticryptococcal therapy. Journal of Fungi. 2016;2(4):29.
Available:https://www.mdpi.com/2309-608X/2/4/29

Sato K, Yamamoto H, Nomura T, Matsumoto I, Miyasaka T, et al. Cryptococcus neoformans infection in mice lacking type i interferon signaling leads to increased fungal clearance and IL-4-dependent mucin production in the lungs. PLOS ONE. 2015;10(9):0138291. Available:https://doi.org/10.1371/journal.pone.0138291

Levitz SM, DiBenedetto DJ. Differential stimulation of murine resident peritoneal cells by selectively opsonized encapsulated and acapsular Cryptococcus neoformans. Infect Immun. 1988;56(10):2544-51.

Mestas J, Hughes CC. Of mice and not men: Differences between mouse and human immunolog; 2004.

Mambula SS, Simons ER, Hastey R, Selsted ME, Levitz SM. Human neutrophil-mediated nonoxidative antifungal activity against Cryptococcus neoformans. Infect Immun. 2000;68(11):6257-64.
DOI: 10.1128/iai.68.11.6257-6264.2000

Nelson BN, Hawkins AN, Wozniak KL. Pulmonary macrophage and dendritic cell responses to Cryptococcus neoformans. Front Cell Infect Microbiol. 2020;10:37.
DOI: 10.3389/fcimb.2020.00037

Fu MS, Drummond RA. The Diverse Roles of Monocytes in Cryptococcosis. J Fungi (Basel). 2020 Jul 16;6(3):111.
DOI: 10.3390/jof6030111